(k) Good governance:

Governments should provide regular reports about their use of AI in policing, intelligence, and security.
Principle: Suggested generic principles for the development, implementation and use of AI, Mar 21, 2019

Published by The Extended Working Group on Ethics of Artificial Intelligence (AI) of the World Commission on the Ethics of Scientific Knowledge and Technology (COMEST), UNESCO

Related Principles

· 2.4 Cybersecurity and Privacy

Just like technologies that have come before it, AI depends on strong cybersecurity and privacy provisions. We encourage governments to use strong, globally accepted and deployed cryptography and other security standards that enable trust and interoperability. We also promote voluntary information sharing on cyberattacks or hacks to better enable consumer protection. The tech sector incorporates strong security features into our products and services to advance trust, including using published algorithms as our default cryptography approach as they have the greatest trust among global stakeholders, and limiting access to encryption keys. Data and cybersecurity are integral to the success of AI. We believe for AI to flourish, users must trust that their personal and sensitive data is protected and handled appropriately. AI systems should use tools, including anonymized data, de identification, or aggregation to protect personally identifiable information whenever possible.

Published by Information Technology Industry Council (ITI) in AI Policy Principles, Oct 24, 2017

• Require Accountability for Ethical Design and Implementation

The social implications of computing have grown and will continue to expand as more people have access to implementations of AI. Public policy should work to identify and mitigate discrimination caused by the use of AI and encourage designing in protections against these harms. [Recommendations] • Standing for “Accountable Artificial Intelligence”: Governments, industry and academia should apply the Information Accountability Foundation’s principles to AI. Organizations implementing AI solutions should be able to demonstrate to regulators that they have the right processes, policies and resources in place to meet those principles. • Transparent decisions: Governments should determine which AI implementations require algorithm explainability to mitigate discrimination and harm to individuals.

Published by Intel in AI public policy principles, Oct 18, 2017

5. Principle of security

Users and data providers should pay attention to the security of AI systems or AI services. [Main points to discuss] A) Implementation of security measures Users may be expected to pay attention to the security of AI and take reasonable measures in light of the technology level at that time. In addition, users may be expected to consider measures to be taken against security breaches of AI in advance. B) Service provision, etc. for security measures AI service providers may be expected, with regard to their AI services, to provide services for security measures to end users and share incident information with end users. C) Attention to security vulnerabilities of AI by learning inaccurate or inappropriate data Users and data providers may be expected to pay attention to the risk that AI’s security might become vulnerable by learning inaccurate or inappropriate data. [as referred to in supra 2) Principle of data quality―Main point B)]

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in Draft AI Utilization Principles, Jul 17, 2018

9. Safety and Security

Agencies should promote the development of AI systems that are safe, secure, and operate as intended, and encourage the consideration of safety and security issues throughout the AI design, development, deployment, and operation process. Agencies should pay particular attention to the controls in place to ensure the confidentiality, integrity, and availability of the information processed, stored, and transmitted by AI systems. Agencies should give additional consideration to methods for guaranteeing systemic resilience, and for preventing bad actors from exploiting AI system weaknesses, including cybersecurity risks posed by AI operation, and adversarial use of AI against a regulated entity’s AI technology. When evaluating or introducing AI policies, agencies should be mindful of any potential safety and security risks, as well as the risk of possible malicious deployment and use of AI applications.

Published by The White House Office of Science and Technology Policy (OSTP), United States in Principles for the Stewardship of AI Applications, Nov 17, 2020