Explainability

Ensure that algorithmic decisions as well as any data driving those decisions can be explained to end users and other stakeholders in non technical terms.
Principle: Principles for Accountable Algorithms, Jul 22, 2016 (unconfirmed)

Published by Fairness, Accountability, and Transparency in Machine Learning (FAT/ML)

Related Principles

Preamble

Two of Deutsche Telekom’s most important goals are to keep being a trusted companion and to enhance customer experience. We see it as our responsibility as one of the leading ICT companies in Europe to foster the development of “intelligent technologies”. At least either important, these technologies, such as AI, must follow predefined ethical rules. To define a corresponding ethical framework, firstly it needs a common understanding on what AI means. Today there are several definitions of AI, like the very first one of John McCarthy (1956) “Every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it.” In line with other companies and main players in the field of AI we at DT think of AI as the imitation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self correction. After several decades, Artificial Intelligence has become one of the most intriguing topics of today – and the future. It has become widespread available and is discussed not only among experts but also more and more in public, politics, etc.. AI has started to influence business (new market opportunities as well as efficiency driver), society (e.g. broad discussion about autonomously driving vehicles or AI as “job machine” vs. “job killer”) and the life of each individual (AI already found its way into the living room, e.g. with voice steered digital assistants like smart speakers). But the use of AI and its possibilities confront us not only with fast developing technologies but as well as with the fact that our ethical roadmaps, based on human human interactions, might not be sufficient in this new era of technological influence. New questions arise and situations that were not imaginable in our daily lives then emerge. We as DT also want to develop and make use of AI. This technology can bring many benefits based on improving customer experience or simplicity. We are already in the game, e.g having several AI related projects running. With these comes an increase of digital responsibility on our side to ensure that AI is utilized in an ethical manner. So we as DT have to give answers to our customers, shareholders and stakeholders. The following Digital Ethics guidelines state how we as Deutsche Telekom want to build the future with AI. For us, technology serves one main purpose: It must act supportingly. Thus AI is in any case supposed to extend and complement human abilities rather than lessen them. Remark: The impact of AI on DT jobs – may it as a benefit and for value creation in the sense of job enrichment and enlargement or may it in the sense of efficiency is however not focus of these guidelines.

Published by Deutsche Telekom in Deutsche Telekom’s guidelines for artificial intelligence, May 11, 2018

IV. Transparency

The traceability of AI systems should be ensured; it is important to log and document both the decisions made by the systems, as well as the entire process (including a description of data gathering and labelling, and a description of the algorithm used) that yielded the decisions. Linked to this, explainability of the algorithmic decision making process, adapted to the persons involved, should be provided to the extent possible. Ongoing research to develop explainability mechanisms should be pursued. In addition, explanations of the degree to which an AI system influences and shapes the organisational decision making process, design choices of the system, as well as the rationale for deploying it, should be available (hence ensuring not just data and system transparency, but also business model transparency). Finally, it is important to adequately communicate the AI system’s capabilities and limitations to the different stakeholders involved in a manner appropriate to the use case at hand. Moreover, AI systems should be identifiable as such, ensuring that users know they are interacting with an AI system and which persons are responsible for it.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

(Preamble)

Automated decision making algorithms are now used throughout industry and government, underpinning many processes from dynamic pricing to employment practices to criminal sentencing. Given that such algorithmically informed decisions have the potential for significant societal impact, the goal of this document is to help developers and product managers design and implement algorithmic systems in publicly accountable ways. Accountability in this context includes an obligation to report, explain, or justify algorithmic decision making as well as mitigate any negative social impacts or potential harms. We begin by outlining five equally important guiding principles that follow from this premise: Algorithms and the data that drive them are designed and created by people There is always a human ultimately responsible for decisions made or informed by an algorithm. "The algorithm did it" is not an acceptable excuse if algorithmic systems make mistakes or have undesired consequences, including from machine learning processes.

Published by Fairness, Accountability, and Transparency in Machine Learning (FAT/ML) in Principles for Accountable Algorithms, Jul 22, 2016 (unconfirmed)

Ensuring Accountability

Principle: Legal accountability has to be ensured when human agency is replaced by decisions of AI agents. Recommendations: Ensure legal certainty: Governments should ensure legal certainty on how existing laws and policies apply to algorithmic decision making and the use of autonomous systems to ensure a predictable legal environment. This includes working with experts from all disciplines to identify potential gaps and run legal scenarios. Similarly, those designing and using AI should be in compliance with existing legal frameworks. Put users first: Policymakers need to ensure that any laws applicable to AI systems and their use put users’ interests at the center. This must include the ability for users to challenge autonomous decisions that adversely affect their interests. Assign liability up front: Governments working with all stakeholders need to make some difficult decisions now about who will be liable in the event that something goes wrong with an AI system, and how any harm suffered will be remedied.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017

4. Explainability

Ensure that automated and algorithmic decisions and any associated data driving those decisions can be explained to end users and other stakeholders in non technical terms.

Published by Personal Data Protection Commission (PDPC), Singapore in A compilation of existing AI ethical principles (Annex A), Jan 21, 2020