· 3. Design for all

Systems should be designed in a way that allows all citizens to use the products or services, regardless of their age, disability status or social status. It is particularly important to consider accessibility to AI products and services to people with disabilities, which are horizontal category of society, present in all societal groups independent from gender, age or nationality. AI applications should hence not have a one size fits all approach, but be user centric and consider the whole range of human abilities, skills and requirements. Design for all implies the accessibility and usability of technologies by anyone at any place and at any time, ensuring their inclusion in any living context, thus enabling equitable access and active participation of potentially all people in existing and emerging computer mediated human activities. This requirement links to the United Nations Convention on the Rights of Persons with Disabilities.
Principle: Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence

Related Principles

Fairness

Throughout their lifecycle, AI systems should be inclusive and accessible, and should not involve or result in unfair discrimination against individuals, communities or groups. This principle aims to ensure that AI systems are fair and that they enable inclusion throughout their entire lifecycle. AI systems should be user centric and designed in a way that allows all people interacting with it to access the related products or services. This includes both appropriate consultation with stakeholders, who may be affected by the AI system throughout its lifecycle, and ensuring people receive equitable access and treatment. This is particularly important given concerns about the potential for AI to perpetuate societal injustices and have a disparate impact on vulnerable and underrepresented groups including, but not limited to, groups relating to age, disability, race, sex, intersex status, gender identity and sexual orientation. Measures should be taken to ensure the AI produced decisions are compliant with anti‐discrimination laws.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

V. Diversity, non discrimination and fairness

Data sets used by AI systems (both for training and operation) may suffer from the inclusion of inadvertent historic bias, incompleteness and bad governance models. The continuation of such biases could lead to (in)direct discrimination. Harm can also result from the intentional exploitation of (consumer) biases or by engaging in unfair competition. Moreover, the way in which AI systems are developed (e.g. the way in which the programming code of an algorithm is written) may also suffer from bias. Such concerns should be tackled from the beginning of the system’ development. Establishing diverse design teams and setting up mechanisms ensuring participation, in particular of citizens, in AI development can also help to address these concerns. It is advisable to consult stakeholders who may directly or indirectly be affected by the system throughout its life cycle. AI systems should consider the whole range of human abilities, skills and requirements, and ensure accessibility through a universal design approach to strive to achieve equal access for persons with disabilities.

Published by European Commission in Key requirements for trustworthy AI, Apr 8, 2019

· 2. The Principle of Non maleficence: “Do no Harm”

AI systems should not harm human beings. By design, AI systems should protect the dignity, integrity, liberty, privacy, safety, and security of human beings in society and at work. AI systems should not threaten the democratic process, freedom of expression, freedoms of identify, or the possibility to refuse AI services. At the very least, AI systems should not be designed in a way that enhances existing harms or creates new harms for individuals. Harms can be physical, psychological, financial or social. AI specific harms may stem from the treatment of data on individuals (i.e. how it is collected, stored, used, etc.). To avoid harm, data collected and used for training of AI algorithms must be done in a way that avoids discrimination, manipulation, or negative profiling. Of equal importance, AI systems should be developed and implemented in a way that protects societies from ideological polarization and algorithmic determinism. Vulnerable demographics (e.g. children, minorities, disabled persons, elderly persons, or immigrants) should receive greater attention to the prevention of harm, given their unique status in society. Inclusion and diversity are key ingredients for the prevention of harm to ensure suitability of these systems across cultures, genders, ages, life choices, etc. Therefore not only should AI be designed with the impact on various vulnerable demographics in mind but the above mentioned demographics should have a place in the design process (rather through testing, validating, or other). Avoiding harm may also be viewed in terms of harm to the environment and animals, thus the development of environmentally friendly AI may be considered part of the principle of avoiding harm. The Earth’s resources can be valued in and of themselves or as a resource for humans to consume. In either case it is necessary to ensure that the research, development, and use of AI are done with an eye towards environmental awareness.

Published by The European Commission’s High-Level Expert Group on Artificial Intelligence in Draft Ethics Guidelines for Trustworthy AI, Dec 18, 2018

5 DEMOCRATIC PARTICIPATION PRINCIPLE

AIS must meet intelligibility, justifiability, and accessibility criteria, and must be subjected to democratic scrutiny, debate, and control. 1) AIS processes that make decisions affecting a person’s life, quality of life, or reputation must be intelligible to their creators. 2) The decisions made by AIS affecting a person’s life, quality of life, or reputation should always be justifiable in a language that is understood by the people who use them or who are subjected to the consequences of their use. Justification consists in making transparent the most important factors and parameters shaping the decision, and should take the same form as the justification we would demand of a human making the same kind of decision. 3) The code for algorithms, whether public or private, must always be accessible to the relevant public authorities and stakeholders for verification and control purposes. 4) The discovery of AIS operating errors, unexpected or undesirable effects, security breaches, and data leaks must imperatively be reported to the relevant public authorities, stakeholders, and those affected by the situation. 5) In accordance with the transparency requirement for public decisions, the code for decision making algorithms used by public authorities must be accessible to all, with the exception of algorithms that present a high risk of serious danger if misused. 6) For public AIS that have a significant impact on the life of citizens, citizens should have the opportunity and skills to deliberate on the social parameters of these AIS, their objectives, and the limits of their use. 7) We must at all times be able to verify that AIS are doing what they were programmed for and what they are used for. 8) Any person using a service should know if a decision concerning them or affecting them was made by an AIS. 9) Any user of a service employing chatbots should be able to easily identify whether they are interacting with an AIS or a real person. 10) Artificial intelligence research should remain open and accessible to all.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018

7 DIVERSITY INCLUSION PRINCIPLE

The development and use of AIS must be compatible with maintaining social and cultural diversity and must not restrict the scope of lifestyle choices or personal experiences. 1) AIS development and use must not lead to the homogenization of society through the standardization of behaviours and opinions. 2) From the moment algorithms are conceived, AIS development and deployment must take into consideration the multitude of expressions of social and cultural diversity present in the society. 3) AI development environments, whether in research or industry, must be inclusive and reflect the diversity of the individuals and groups of the society. 4) AIS must avoid using acquired data to lock individuals into a user profile, fix their personal identity, or confine them to a filtering bubble, which would restrict and confine their possibilities for personal development — especially in fields such as education, justice, or business. 5) AIS must not be developed or used with the aim of limiting the free expression of ideas or the opportunity to hear diverse opinions, both of which being essential conditions of a democratic society. 6) For each service category, the AIS offering must be diversified to prevent de facto monopolies from forming and undermining individual freedoms.

Published by University of Montreal in The Montreal Declaration for a Responsible Development of Artificial Intelligence, Dec 4, 2018