· 1.2 Safety and Controllability

Technologists have a responsibility to ensure the safe design of AI systems. Autonomous AI agents must treat the safety of users and third parties as a paramount concern, and AI technologies should strive to reduce risks to humans. Furthermore, the development of autonomous AI systems must have safeguards to ensure controllability of the AI system by humans, tailored to the specific context in which a particular system operates.
Principle: AI Policy Principles, Oct 24, 2017

Published by Information Technology Industry Council (ITI)

Related Principles

Reliability and safety

Throughout their lifecycle, AI systems should reliably operate in accordance with their intended purpose. This principle aims to ensure that AI systems reliably operate in accordance with their intended purpose throughout their lifecycle. This includes ensuring AI systems are reliable, accurate and reproducible as appropriate. AI systems should not pose unreasonable safety risks, and should adopt safety measures that are proportionate to the magnitude of potential risks. AI systems should be monitored and tested to ensure they continue to meet their intended purpose, and any identified problems should be addressed with ongoing risk management as appropriate. Responsibility should be clearly and appropriately identified, for ensuring that an AI system is robust and safe.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· 1.4. Robustness, security and safety

a) AI systems should be robust, secure and safe throughout their entire lifecycle so that, in conditions of normal use, foreseeable use or misuse, or other adverse conditions, they function appropriately and do not pose unreasonable safety risk. b) To this end, AI actors should ensure traceability, including in relation to datasets, processes and decisions made during the AI system lifecycle, to enable analysis of the AI system’s outcomes and responses to inquiry, appropriate to the context and consistent with the state of art. c) AI actors should, based on their roles, the context, and their ability to act, apply a systematic risk management approach to each phase of the AI system lifecycle on a continuous basis to address risks related to AI systems, including privacy, digital security, safety and bias.

Published by G20 Ministerial Meeting on Trade and Digital Economy in G20 AI Principles, Jun 09, 2019

1. Principle of collaboration

Developers should pay attention to the interconnectivity and interoperability of AI systems. [Comment] Developers should give consideration to the interconnectivity and interoperability between the AI systems that they have developed and other AI systems, etc. with consideration of the diversity of AI systems so that: (a) the benefits of AI systems should increase through the sound progress of AI networking; and that (b) multiple developers’ efforts to control the risks should be coordinated well and operate effectively. For this, developers should pay attention to the followings: • To make efforts to cooperate to share relevant information which is effective in ensuring interconnectivity and interoperability. • To make efforts to develop AI systems conforming to international standards, if any. • To make efforts to address the standardization of data formats and the openness of interfaces and protocols including application programming interface (API). • To pay attention to risks of unintended events as a result of the interconnection or interoperations between AI systems that they have developed and other AI systems, etc. • To make efforts to promote open and fair treatment of license agreements for and their conditions of intellectual property rights, such as standard essential patents, contributing to ensuring the interconnectivity and interoperability between AI systems and other AI systems, etc., while taking into consideration the balance between the protection and the utilization with respect to intellectual property related to the development of AI. [Note] The interoperability and interconnectivity in this context expects that AI systems which developers have developed can be connected to information and communication networks, thereby can operate with other AI systems, etc. in mutually and appropriately harmonized manners.

Published by Ministry of Internal Affairs and Communications (MIC), the Government of Japan in AI R&D Principles, Jul 28, 2017

· 1.4. Robustness, security and safety

a) AI systems should be robust, secure and safe throughout their entire lifecycle so that, in conditions of normal use, foreseeable use or misuse, or other adverse conditions, they function appropriately and do not pose unreasonable safety risk. b) To this end, AI actors should ensure traceability, including in relation to datasets, processes and decisions made during the AI system lifecycle, to enable analysis of the AI system’s outcomes and responses to inquiry, appropriate to the context and consistent with the state of art. c) AI actors should, based on their roles, the context, and their ability to act, apply a systematic risk management approach to each phase of the AI system lifecycle on a continuous basis to address risks related to AI systems, including privacy, digital security, safety and bias.

Published by The Organisation for Economic Co-operation and Development (OECD) in OECD Principles on Artificial Intelligence, May 22, 2019

9. Safety and Security

Agencies should promote the development of AI systems that are safe, secure, and operate as intended, and encourage the consideration of safety and security issues throughout the AI design, development, deployment, and operation process. Agencies should pay particular attention to the controls in place to ensure the confidentiality, integrity, and availability of the information processed, stored, and transmitted by AI systems. Agencies should give additional consideration to methods for guaranteeing systemic resilience, and for preventing bad actors from exploiting AI system weaknesses, including cybersecurity risks posed by AI operation, and adversarial use of AI against a regulated entity’s AI technology. When evaluating or introducing AI policies, agencies should be mindful of any potential safety and security risks, as well as the risk of possible malicious deployment and use of AI applications.

Published by The White House Office of Science and Technology Policy (OSTP), United States in Principles for the Stewardship of AI Applications, Jan 13, 2020