· Differential transparency

Different entity needs different transparency and information, and intellectual property technical feature, and technical literacy should also be considered
Principle: "ARCC": An Ethical Framework for Artificial Intelligence, Sep 18, 2018

Published by Tencent Research Institute

Related Principles

Human centred values

Throughout their lifecycle, AI systems should respect human rights, diversity, and the autonomy of individuals. This principle aims to ensure that AI systems are aligned with human values. Machines should serve humans, and not the other way around. AI systems should enable an equitable and democratic society by respecting, protecting and promoting human rights, enabling diversity, respecting human freedom and the autonomy of individuals, and protecting the environment. Human rights risks need to be carefully considered, as AI systems can equally enable and hamper such fundamental rights. It’s permissible to interfere with certain human rights where it’s reasonable, necessary and proportionate. All people interacting with AI systems should be able to keep full and effective control over themselves. AI systems should not undermine the democratic process, and should not undertake actions that threaten individual autonomy, like deception, unfair manipulation, unjustified surveillance, and failing to maintain alignment between a disclosed purpose and true action. AI systems should be designed to augment, complement and empower human cognitive, social and cultural skills. Organisations designing, developing, deploying or operating AI systems should ideally hire staff from diverse backgrounds, cultures and disciplines to ensure a wide range of perspectives, and to minimise the risk of missing important considerations only noticeable by some stakeholders.

Published by Department of Industry, Innovation and Science, Australian Government in AI Ethics Principles, Nov 7, 2019

· Transparency

As AI increasingly changes the nature of work, workers, customers and vendors need to have information about how AI systems operate so that they can understand how decisions are made. Their involvement will help to identify potential bias, errors and unintended outcomes. Transparency is not necessarily nor only a question of open source code. While in some circumstances open source code will be helpful, what is more important are clear, complete and testable explanations of what the system is doing and why. Intellectual property, and sometimes even cyber security, is rewarded by a lack of transparency. Innovation generally, including in algorithms, is a value that should be encouraged. How, then, are these competing values to be balanced? One possibility is to require algorithmic verifiability rather than full algorithmic disclosure. Algorithmic verifiability would require companies to disclose not the actual code driving the algorithm but information allowing the effect of their algorithms to be independently assessed. In the absence of transparency regarding their algorithms’ purpose and actual effect, it is impossible to ensure that competition, labour, workplace safety, privacy and liability laws are being upheld. When accidents occur, the AI and related data will need to be transparent and accountable to an accident investigator, so that the process that led to the accident can be understood.

Published by Centre for International Governance Innovation (CIGI), Canada in Toward a G20 Framework for Artificial Intelligence in the Workplace, Jul 19, 2018

(c) Responsibility

The principle of responsibility must be fundamental to AI research and application. ‘Autonomous’ systems should only be developed and used in ways that serve the global social and environmental good, as determined by outcomes of deliberative democratic processes. This implies that they should be designed so that their effects align with a plurality of fundamental human values and rights. As the potential misuse of ‘autonomous’ technologies poses a major challenge, risk awareness and a precautionary approach are crucial. Applications of AI and robotics should not pose unacceptable risks of harm to human beings, and not compromise human freedom and autonomy by illegitimately and surreptitiously reducing options for and knowledge of citizens. They should be geared instead in their development and use towards augmenting access to knowledge and access to opportunities for individuals. Research, design and development of AI, robotics and ‘autonomous’ systems should be guided by an authentic concern for research ethics, social accountability of developers, and global academic cooperation to protect fundamental rights and values and aim at designing technologies that support these, and not detract from them.

Published by European Group on Ethics in Science and New Technologies, European Commission in Ethical principles and democratic prerequisites, Mar 9, 2018

3. Principle 3 — Accountability

Issue: How can we assure that designers, manufacturers, owners, and operators of A IS are responsible and accountable? [Candidate Recommendations] To best address issues of responsibility and accountability: 1. Legislatures courts should clarify issues of responsibility, culpability, liability, and accountability for A IS where possible during development and deployment (so that manufacturers and users understand their rights and obligations). 2. Designers and developers of A IS should remain aware of, and take into account when relevant, the diversity of existing cultural norms among the groups of users of these A IS. 3. Multi stakeholder ecosystems should be developed to help create norms (which can mature to best practices and laws) where they do not exist because A IS oriented technology and their impacts are too new (including representatives of civil society, law enforcement, insurers, manufacturers, engineers, lawyers, etc.). 4. Systems for registration and record keeping should be created so that it is always possible to find out who is legally responsible for a particular A IS. Manufacturers operators owners of A IS should register key, high level parameters, including: • Intended use • Training data training environment (if applicable) • Sensors real world data sources • Algorithms • Process graphs • Model features (at various levels) • User interfaces • Actuators outputs • Optimization goal loss function reward function

Published by The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems in Ethically Aligned Design (v2): General Principles, (v1) Dec 13, 2016. (v2) Dec 12, 2017

Public Empowerment

Principle: The public’s ability to understand AI enabled services, and how they work, is key to ensuring trust in the technology. Recommendations: “Algorithmic Literacy” must be a basic skill: Whether it is the curating of information in social media platforms or self driving cars, users need to be aware and have a basic understanding of the role of algorithms and autonomous decision making. Such skills will also be important in shaping societal norms around the use of the technology. For example, identifying decisions that may not be suitable to delegate to an AI. Provide the public with information: While full transparency around a service’s machine learning techniques and training data is generally not advisable due to the security risk, the public should be provided with enough information to make it possible for people to question its outcomes.

Published by Internet Society, "Artificial Intelligence and Machine Learning: Policy Paper" in Guiding Principles and Recommendations, Apr 18, 2017