· "Black box" technology

Promote algorithmic transparency and algorithmic audit, to achieve understandable and explainable AI systems
Principle: "ARCC": An Ethical Framework for Artificial Intelligence, Sep 18, 2018

Published by Tencent Research Institute

Related Principles

· Article 6: Transparent and explainable.

Continuously improve the transparency of artificial intelligence systems. Regarding system decision making processes, data structures, and the intent of system developers and technological implementers: be capable of accurate description, monitoring, and reproduction; and realize explainability, predictability, traceability, and verifiability for algorithmic logic, system decisions, and action outcomes.

Published by Artificial Intelligence Industry Alliance (AIIA), China in Joint Pledge on Artificial Intelligence Industry Self-Discipline (Draft for Comment), May 31, 2019

3. Traceable.

DoD’s AI engineering discipline should be sufficiently advanced such that technical experts possess an appropriate understanding of the technology, development processes, and operational methods of its AI systems, including transparent and auditable methodologies, data sources, and design procedure and documentation.

Published by Defense Innovation Board (DIB), Department of Defense (DoD), United States in AI Ethics Principles for DoD, Oct 31, 2019

Chapter 3. The Norms of Research and Development

  10. Strengthen the awareness of self discipline. Strengthen self discipline in activities related to AI research and development, actively integrate AI ethics into every phase of technology research and development, consciously carry out self censorship, strengthen self management, and do not engage in AI research and development that violates ethics and morality.   11. Improve data quality. In the phases of data collection, storage, use, processing, transmission, provision, disclosure, etc., strictly abide by data related laws, standards and norms. Improve the completeness, timeliness, consistency, normativeness and accuracy of data.   12. Enhance safety, security and transparency. In the phases of algorithm design, implementation, and application, etc., improve transparency, interpretability, understandability, reliability, and controllability, enhance the resilience, adaptability, and the ability of anti interference of AI systems, and gradually realize verifiable, auditable, supervisable, traceable, predictable and trustworthy AI.   13. Avoid bias and discrimination. During the process of data collection and algorithm development, strengthen ethics review, fully consider the diversity of demands, avoid potential data and algorithmic bias, and strive to achieve inclusivity, fairness and non discrimination of AI systems.

Published by National Governance Committee for the New Generation Artificial Intelligence, China in Ethical Norms for the New Generation Artificial Intelligence, Sep 25, 2021

5. Fairness

a. Ensure that algorithmic decisions do not create discriminatory or unjust impacts across different demographic lines (e.g. race, sex, etc.). b. To develop and include monitoring and accounting mechanisms to avoid unintentional discrimination when implementing decision making systems. c. To consult a diversity of voices and demographics when developing systems, applications and algorithms.

Published by Personal Data Protection Commission (PDPC), Singapore in A compilation of existing AI ethical principles (Annex A), Jan 21, 2020

· Algorithmic fairness

Ethics by design (EBD): ensure that algorithm is reasonable, and date is accurate, up to date, complete, relevant, unbiased and representative, and take technical measures to identify, solve and eliminate bias Formulate guidelines and principles on solving bias and discrimination, potential mechanisms include algorithmic transparency, quality review, impact assessment, algorithmic audit, supervision and review, ethical board, etc.

Published by Tencent Research Institute in "ARCC": An Ethical Framework for Artificial Intelligence, Sep 18, 2018