6. Flexibility

When developing regulatory and non regulatory approaches, agencies should pursue performance based and flexible approaches that can adapt to rapid changes and updates to AI applications. Rigid, design based regulations that attempt to prescribe the technical specifications of AI applications will in most cases be impractical and ineffective, given the anticipated pace with which AI will evolve and the resulting need for agencies to react to new information and evidence. Targeted agency conformity assessment schemes, to protect health and safety, privacy, and other values, will be essential to a successful, and flexible, performance based approach. To advance American innovation, agencies should keep in mind international uses of AI, ensuring that American companies are not disadvantaged by the United States’ regulatory regime.
Principle: Principles for the Stewardship of AI Applications, Jan 13, 2020

Published by The White House Office of Science and Technology Policy (OSTP), United States

Related Principles

· 2.2 Flexible Regulatory Approach

We encourage governments to evaluate existing policy tools and use caution before adopting new laws, regulations, or taxes that may inadvertently or unnecessarily impede the responsible development and use of AI. As applications of AI technologies vary widely, overregulating can inadvertently reduce the number of technologies created and offered in the marketplace, particularly by startups and smaller businesses. We encourage policymakers to recognize the importance of sector specific approaches as needed; one regulatory approach will not fit all AI applications. We stand ready to work with policymakers and regulators to address legitimate concerns where they occur.

Published by Information Technology Industry Council (ITI) in AI Policy Principles, Oct 24, 2017

Chapter 4. The Norms of Supply

  14. Respect market rules. Strictly abide by the various rules and regulations for market access, competition, and trading activities, actively maintain market order, and create a market environment conducive to the development of AI. Data monopoly, platform monopoly, etc. must not be used to disrupt the orderly market competitions, and any means that infringe on the intellectual property rights of other subjects are forbidden.   15. Strengthen quality control. Strengthen the quality monitoring and the evaluations on the use of AI products and services, avoid infringements on personal safety, property safety, user privacy, etc. caused by product defects introduced during the design and development phases, and must not operate, sell, or provide products and services that do not meet the quality standards.   16. Protect the rights and interests of users. Users should be clearly informed that AI technology is used in products and services. The functions and limitations of AI products and services should be clearly identified, and users’ rights to know and to consent should be ensured. Simple and easy to understand solutions for users to choose to use or quit the AI mode should be provided, and it is forbidden to set obstacles for users to fairly use AI products and services.   17. Strengthen emergency protection. Emergency mechanisms and loss compensation plans and measures should be investigated and formulated. AI systems need to be timely monitored, user feedbacks should be responded and processed in a timely manner, systemic failures should be prevented in time, and be ready to assist relevant entities to intervene in the AI systems in accordance with laws and regulations to reduce losses and avoid risks.

Published by National Governance Committee for the New Generation Artificial Intelligence, China in Ethical Norms for the New Generation Artificial Intelligence, Sep 25, 2021

3. Scientific Integrity and Information Quality

The government’s regulatory and non regulatory approaches to AI applications should leverage scientific and technical information and processes. Agencies should hold information, whether produced by the government or acquired by the government from third parties, that is likely to have a clear and substantial influence on important public policy or private sector decisions (including those made by consumers) to a high standard of quality, transparency, and compliance. Consistent with the principles of scientific integrity in the rulemaking and guidance processes, agencies should develop regulatory approaches to AI in a manner that both informs policy decisions and fosters public trust in AI. Best practices include transparently articulating the strengths, weaknesses, intended optimizations or outcomes, bias mitigation, and appropriate uses of the AI application’s results. Agencies should also be mindful that, for AI applications to produce predictable, reliable, and optimized outcomes, data used to train the AI system must be of sufficient quality for the intended use.

Published by The White House Office of Science and Technology Policy (OSTP), United States in Principles for the Stewardship of AI Applications, Jan 13, 2020

3 Ensure transparency, explainability and intelligibility

AI should be intelligible or understandable to developers, users and regulators. Two broad approaches to ensuring intelligibility are improving the transparency and explainability of AI technology. Transparency requires that sufficient information (described below) be published or documented before the design and deployment of an AI technology. Such information should facilitate meaningful public consultation and debate on how the AI technology is designed and how it should be used. Such information should continue to be published and documented regularly and in a timely manner after an AI technology is approved for use. Transparency will improve system quality and protect patient and public health safety. For instance, system evaluators require transparency in order to identify errors, and government regulators rely on transparency to conduct proper, effective oversight. It must be possible to audit an AI technology, including if something goes wrong. Transparency should include accurate information about the assumptions and limitations of the technology, operating protocols, the properties of the data (including methods of data collection, processing and labelling) and development of the algorithmic model. AI technologies should be explainable to the extent possible and according to the capacity of those to whom the explanation is directed. Data protection laws already create specific obligations of explainability for automated decision making. Those who might request or require an explanation should be well informed, and the educational information must be tailored to each population, including, for example, marginalized populations. Many AI technologies are complex, and the complexity might frustrate both the explainer and the person receiving the explanation. There is a possible trade off between full explainability of an algorithm (at the cost of accuracy) and improved accuracy (at the cost of explainability). All algorithms should be tested rigorously in the settings in which the technology will be used in order to ensure that it meets standards of safety and efficacy. The examination and validation should include the assumptions, operational protocols, data properties and output decisions of the AI technology. Tests and evaluations should be regular, transparent and of sufficient breadth to cover differences in the performance of the algorithm according to race, ethnicity, gender, age and other relevant human characteristics. There should be robust, independent oversight of such tests and evaluation to ensure that they are conducted safely and effectively. Health care institutions, health systems and public health agencies should regularly publish information about how decisions have been made for adoption of an AI technology and how the technology will be evaluated periodically, its uses, its known limitations and the role of decision making, which can facilitate external auditing and oversight.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021

6 Promote artificial intelligence that is responsive and sustainable

Responsiveness requires that designers, developers and users continuously, systematically and transparently examine an AI technology to determine whether it is responding adequately, appropriately and according to communicated expectations and requirements in the context in which it is used. Thus, identification of a health need requires that institutions and governments respond to that need and its context with appropriate technologies with the aim of achieving the public interest in health protection and promotion. When an AI technology is ineffective or engenders dissatisfaction, the duty to be responsive requires an institutional process to resolve the problem, which may include terminating use of the technology. Responsiveness also requires that AI technologies be consistent with wider efforts to promote health systems and environmental and workplace sustainability. AI technologies should be introduced only if they can be fully integrated and sustained in the health care system. Too often, especially in under resourced health systems, new technologies are not used or are not repaired or updated, thereby wasting scare resources that could have been invested in proven interventions. Furthermore, AI systems should be designed to minimize their ecological footprints and increase energy efficiency, so that use of AI is consistent with society’s efforts to reduce the impact of human beings on the earth’s environment, ecosystems and climate. Sustainability also requires governments and companies to address anticipated disruptions to the workplace, including training of health care workers to adapt to use of AI and potential job losses due to the use of automated systems for routine health care functions and administrative tasks.

Published by World Health Organization (WHO) in Key ethical principles for use of artificial intelligence for health, Jun 28, 2021